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Abstract
In the tight-binding approximation we consider multi-channel transmission
through a billiard coupled to leads. Following Dittes we derive the coupling
matrix, the scattering matrix and the effective Hamiltonian, but take into
account the energy restriction of the conductance band. The complex
eigenvalues of the effective Hamiltonian define the poles of the scattering
matrix. For some simple cases, we present exact values for the poles. We
derive also the condition for the appearance of double poles.

PACS number: 03.65.Nk

1. Introduction

In recent years, ballistic transport through quantum systems has been studied as a scattering
problem on billiards (microwave cavities) with infinitely high potential walls (hard wall
approximation). The scattering properties of such billiards are closely related to the spectral
properties of the corresponding closed billiards [1, 2]. The opening of the billiards is realized
by attaching at least one lead to them. However, for the study of the transmission through
the billiard two leads are necessary. The fundamental object that characterizes the process of
quantum scattering is the unitary S-matrix relating the amplitudes of incoming waves to the
amplitudes of outgoing waves. Provided that the properties of the Hamiltonian HB for the
closed billiard are known, one can consider its open counterpart and work out the S-matrix
formalism by standard methods of the theory of quantum scattering [3–9]. As a result, the S-
matrix is expressed in terms of both the Hamiltonian HB and the matrix elements describing the
coupling of the billiard states to the lead states. The explicit expressions for the coupling matrix
elements were first formulated in 1996 by Šeba et al [10, 11] for the case of point contacts of
the leads with the billiard. Later, Fyodorov and Sommers [7] developed their theory for the
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connection of the billiard with one lead of finite width by using Neumann boundary conditions
(see also [2]). Recently, Dittes [8] considered the same type of open system and derived the
expressions for the coupling matrix with Neumann or Dirichlet boundary conditions both by
using the Green function technique.

In the present paper, we consider a d-dimensional billiard connected to leads by
using another approach that is based on the tight-binding model. The motivation for this
consideration is the following. First of all, the increasing development of fabrication techniques
requires the possibility to perform reliable numerous experiments on ballistic transport through
devices of atomic size [12, 13] and through molecular devices consisting of very few atoms.
Secondly, Pichugin et al [14] who applied the formula for the coupling matrix derived by Dittes
[8], found that their results do not coincide with those of a direct numerical computation of the
S-matrix poles, above all for the Dirichlet boundary conditions. As we will show in the present
paper, one of the reasons for this disagreement is that the formal continuous approach used
by Dittes [8] is unbounded in energy and gives zero radiation shift. In electron transmission
through electron wires, however, the energy of the electrons is bounded in energy, at least
from below. This fact gives rise to radiation shifts of poles of the S-matrix which cannot be
neglected in calculations for concrete systems. Thirdly, it is desirable to receive numerical
results from an S-matrix computation within the tight-binding model in order to compare them
with the results of numerical computation of the transmission through billiards. With this aim
we derive, in the present paper, the coupling matrix, the effective Hamiltonian and the poles
of the S-matrix within the tight-binding model and present some typical numerical results.

Here, the following remark should be added. The computer simulations solve
the Schrödinger equation using finite-difference Hamiltonians, i.e. the tight-binding
approximation. After matching the incoming and outgoing waves with the solutions of the
Schrödinger equation by applying the boundary conditions at the transverse sections of the
leads, the conductance of the billiard as well as the scattering wavefunction can be computed.
Today, the calculations can be performed with a very high accuracy by using large grids
and the technique of sparse matrices. The current S-matrix theory is adequate to these
computer simulations. It is, however, numerically more time consuming because the effective
Hamiltonian is not a sparse matrix. Nonetheless, calculations with the effective Hamiltonian
are useful since they provide another view of the results. In this formalism, the resonant
peaks of the conductance are related to the poles of the S-matrix that correspond to the
eigenvalues of the effective Hamiltonian. It is possible therefore to draw some conclusions on
the origin of the resonant peaks and on their possible control by means of external parameters.

In the present paper we will follow, as closely as possible, the Dittes review [8], even
in the notation. In the case of microwave or quantum semiconductor billiards, the waves
are incident to the billiard through (infinitely) long, straight waveguides (leads) of a certain
width. The different channels correspond therefore to different transverse modes of the wave
propagation within the leads [2]. At a given frequency E (the Fermi energy), we enumerate the
propagating modes by p = 1, . . . ,M . Thereby, we associate with the lead region a continuous
set of states |C,p,E〉 where C specifies the lead number (terminal). In the present paper, we
consider mostly two leads, the right lead with incident and reflected waves and the left lead
with outgoing waves as shown in figure 1. Our approach can, however, be easily generalized
to a larger number of leads as done in sections 4 and 5.

2. One-dimensional tight-binding model of resonant tunnelling

A numerical scheme for the computation of quantum transport through billiards with attached
leads is mainly based on the finite-difference Schrödinger equation. Applying the Ando
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Figure 1. The one-dimensional tight-binding model. The wave lines couple the left and right leads
with the box containing N points and, correspondingly, N resonant states.

procedure [15] for the boundary conditions has enabled us to find the transmission properties
of the billiards from the scattering wavefunction for any geometry of billiards and straight
leads. In order to compare the results from such a computation with the S-matrix theory, we
consider systems projected on a lattice with finite grid.

As a first example, we consider a simple one-dimensional model for quantum scattering
and transport. This model is formulated as the tight-binding model (the Anderson model)

H = −
∑

tj |j 〉〈j + 1| + c.c. (1)

Here j runs over all sites of the system including left and right leads and the one-dimensional
box consisting of N sites as shown in figure 1. The couplings between the box and leads can
be governed by adding into (1) the barrier potential wL[δ(j)+δ(j −1)]+wR[δ(j −N)+δ(j −
N − 1)] which defines the double barrier structure provided that all hopping matrix elements
tj = 1. For the limit wL,wR → ∞ the box is closed, while for the limit wL,wR → 1 the
box is completely open. However, it is easier to realize the openness of the box by varying
the hopping matrix elements between the leads and the box as follows. We define tj = vL,
if j = 1 and tj = vR , if j = N , and tj = 1 otherwise. Then the tight-binding model (1)
presents the simplest case of a one-dimensional box with N sites coupled with left and right
semi-infinite leads via the corresponding coupling constants vL, vR as shown in figure 1. For
the limit vL, vR → 0 the box is closed, while for the limit vL, vR → 1 it is completely open.

The hopping matrix elements tj in the Hamiltonian (1) are proportional to overlapping
integrals of electron wavefunctions of adjacent atoms. The model being similar to the one-
dimensional model with a double barrier structure [16, 17], describes resonant tunnelling. In
this case the variables 1/vL, 1/vR play the role of the heights of the double barrier structure
provided that vL < 1, vR < 1. The present model, however, also gives the possibility of
considering the case of strong coupling, vL > 1, vR > 1.

At the left of the box we present the solution of the Schrödinger equation

H |ψ〉 = E|ψ〉 (2)

as

ψj = eikj + re−ikj j < 1 (3)

where r is the reflection coefficient with energy

E(k) = −2 cos k −π � k � π. (4)

As will be seen later, the energy E(k) forms the conduction band −2 � E � 2 with finite
width. At the right of the box we write

ψj = t eikj j > N. (5)

At last, the solution of (2) inside the box is

ψj = a eikj + b e−ikj j = 1, 2, . . . , N. (6)
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Figure 2. The transmission probability versus the wave number of the incident quantum particle.
The positions of the eigenvalues of the closed billiard (vL = vR = 0) are shown by stars. One can
see the radiation shifts caused by the coupling of the 1D box with the leads.

Substituting these functions into (2) we obtain the following linear equations

r(eik − E) + vL eika + vLb e−ik = eik

vLr + eik(eik − E)a + e−ik(e−ik − E)b = −vL
(7)

eikN (e−ik − E)a + e−ikN (eik − E)b + vR eik(N+1)t = 0

vR eikNa + vR e−ikNb + eik(N+1)(eik − E)t = 0.

The coefficients a and b can be expressed via the transmission coefficient t as follows

a = t
vR − 1

vR
e−2ik

1 − e−2ik
b = t

(
vR − 1

vR

)
e2ikN

1 − e−2ik
. (8)

Finally, one obtains

t = 4 sin2 k/A
(9)

r = t

vL(1 − e−2ik)

[
vR − 1

vR

e−2ik +

(
1

vR

− vR

)
e2ikN

]
− 1

for the solution of the system of equations (7) where

A =
(

vL − 1

vL

) (
vR − 1

vR

)
e2ikN − e−2ik

(
vL e2ik − 1

vL

) (
vR e2ik − 1

vR

)
.

For the particular case vL = vR = 1, we obtain from (9) that t = 1 and r = 0. A typical
resonant transmission through a one-dimensional box is shown in figure 2.

The tight-binding model (1) demonstrates a few remarkable features. The first one is the
symmetry of the resonant transmission relative to vL,R → 1/vL,R . This symmetry means the
following: for small as well as for large coupling coefficients, the effective coupling of the box
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to the leads is small. Such a feature was first observed in reactions on atomic nuclei, see
the review [6], and analytically derived by Dittes et al for an N-level system coupled to one
open channel [18]. With increasing coupling strength, the widths of N − 1 resonance states
decrease as 1/v in the single-channel case while only one resonance state accumulates almost
the total sum of the widths. In our case, the N-level system is coupled to two open channels.
Correspondingly, with increasing coupling coefficients vL, vR the widths of N − 2 resonance
states decrease while the widths of two resonance states increase. We will return to this feature
below when the poles of the scattering matrix will be considered. The second feature is that
the heights of the resonant peaks are equal to one only when vL = vR , similar to the double
barrier resonant structure. This fact was firstly established by Ricco and Azbel [17]. The
radiation shifts of the positions of the resonant peaks relative to the eigenvalues of the box

En = −2 cos kn kn = πn/(N + 1) n = 1, 2, . . . , N (10)

are the third peculiarity of the tight-binding model. The positions of the eigenvalues (10)
are shown in figure 2 by stars. The shifts and widths of the resonant peaks are symmetrical,
relative to k → −k, and E → −E. The last symmetry follows from the invariance of the
solution of the tight-binding model relative to tj → −tj .

3. The S-matrix for the 1D tight-binding model

The simplicity of the model (1) allows us to establish the explicit correspondence between
the analytical results for the transmission amplitudes (9) and the S-matrix approach [3–6,
8]. This 1D model was also used in [19] to investigate the width distribution. In this
approach the scattering system is decomposed into a closed subsystem described by the
internal Hamiltonian HB with discrete bound states |ψn〉, n = 1, 2, . . . , N and the continuum
of external scattering states |E,L〉 and |E,R〉 corresponding to the semi-infinite left and right
leads. The Hamiltonian of the two uncoupled subsystems is

H0 = HB + HL + HR HB = ∑
n En|n〉〈n|

HL =
∫ 2

−2
dE E|E,L〉〈E,L| HR =

∫ 2

−2
dE E|E,R〉〈E,R| (11)

where En are the energies of the bound states of the 1D closed billiard, and E denotes the
energy of the leads. We use the following normalization conditions

〈n|m〉 = δnm 〈E,L|E′, L〉 = 〈E,R|E′, R〉 = δ(E − E′). (12)

The couplings between the internal and external subsystems can be incorporated by the
coupling operator

V =
∑

n

∑
C=L,R

∫ 2

−2
dE Vn(E,C)|E,C〉〈n| + h.c. (13)

As shown in figure 1 the closed 1D billiard consists of N sites with energies given by
equation (10) and the corresponding eigenfunctions

ψn(j) =
√

2

N + 1
sin

(
πnj

N + 1

)
j = 1, 2, . . . , N. (14)

These eigenfunctions satisfy the Dirichlet boundary conditions ψn(0) = ψn(N +1) = 0. Since
the leads are semi-infinite wires the wavefunctions of the left and right leads are, respectively

ψE,L(j) =
√

1

2π |sin k| sin k(1 − j) ψE,R(j) =
√

1

2π |sin k| sin k(j − N). (15)
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The energy in the leads corresponding to a single conductance energy band, is defined by
E(k) = −2 cos k, −π � k � π . It is easy to see that in the continuous limit k → 0 the
functions (15) take the form

ψE,L(x) =
√

1

2π |k| sin kx (16)

given in [7]. From (13) we have

Vn(E,C) = 〈E,C|V |n〉 = 〈E,C|
∑

j

|j 〉〈j |V |
∑
j ′

|j ′〉〈j ′|n〉 C = L,R.

Since as shown in figure 1 the coupling matrix elements 〈j |V |j ′〉 are not equal to zero if only
j = 0, 1, j ′ = 1, 0 or j = N,N + 1, j ′ = N + 1, N , we obtain finally, using (14) and (15),
the coupling coefficients as

Vn(E,L) = vLψE,L(0)ψn(1) = vL

√
sin k

π(N + 1)
sin

πn

N + 1
(17)

Vn(E,R) = vRψn(N)ψE,R(N + 1) = vR

√
sin k

π(N + 1)
sin

πnN

N + 1
.

For the total Hamiltonian

H = H0 + V (18)

the stationary Schrödinger equation reads

H |ψ(E)〉 = E(k)|ψ(E)〉. (19)

For E(k) different from the eigenvalues En of the box, the operator (E + i0 − H0)V is well
defined and equation (19) is equivalent to the Lippmann–Schwinger equation

|ψ〉 = |ψ0〉 + (E + i0 − H0)
−1V |ψ〉 (20)

if the boundary condition of outgoing waves is adopted and

(E − H0)|ψ0〉 = 0. (21)

The Lippmann–Schwinger equation (20) also reads

|ψ〉 = [F(E + i0)]−1|ψ0〉 (22)

where

F(E + i0) = 1 − (E + i0 − H0)
−1V (23)

and

|ψ0〉 =

|E,L〉

0
|E,R〉


 . (24)

Following [5, 8] we introduce three projection operators: for the left and right leads

PC =
∫

dE|E,C〉〈E,C| (25)

and for the billiard

PB =
∑

n

|n〉〈n| (26)



S-matrix theory for transmission through billiards in tight-binding approach 11419

with the help of which we can write the scattering wavefunction (22) as

|ψ〉 =

PL|ψ〉

PB |ψ〉
PR|ψ〉


 =


|ψL〉

|ψB〉
|ψR〉


 . (27)

Then the coupling operator (13) reads

V =

PLV PL PLV PB PLV PR

PBV PL PBV PB PBV PR

PRV PL PRV PB PRV PR


 =


 0 VLB 0

VBL 0 VBR

0 VRB 0


 (28)

where by using (17) we obtain

VBL = vL

∑
n

ψn(1)

√
1

2π

∫
dE[1 − (E/2)2]1/4|n〉〈E,L|

(29)

VBR = vR

∑
n

ψn(N)

√
1

2π

∫
dE[1 − (E/2)2]1/4|n〉〈E,R|

and VBC = V +
CB . Substituting (28) into (23) we have

F =




1 − 1
E−HL

VLB 0

− 1
E−HB

VBL 1 − 1
E−HB

VBR

0 − 1
E−HR

VRB 1


 . (30)

Using the identity
 1 −A 0

−B 1 −C

0 −D 1




−1

=

1 + AT B AT AT C

T B T T C

DT B DT 1 + DT C


 (31)

one obtains for the inverse matrix F

F−1 =




1 + 1
E−HL

VLB
1
D

1
E−HB

VBL
1

E−HL
VLB

1
D

1
E−HL

VLB
1
D

1
E−HB

VBR

1
D

1
E−HB

VBL
1
D

1
D

1
E−HB

VBR

1
E−HR

VRB
1
D

1
E−HB

VBL
1

E−HR
VRB

1
D

1 + 1
E−HR

VRB
1
D

1
E−HB

VBR


 . (32)

where

T = 1

1 − BA − CD

and

D = 1 − 1

E − HB

∑
C=L,R

VBC

1

E − HC

VCB. (33)

From equations (22) and (27) it follows that the wavefunction in the interior of the billiard is

|ψB〉 = Q−1
∑

C=L,R

VBC |E,C〉 (34)

where

Q = E+ − HB −
∑

C=L,R

VBC

1

E+ − HC

VCB. (35)

Here we used the identity [8]
1

1 − AB
A = A

1

1 − BA
.
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If we substitute the coupling constants (17) into formula (35), it follows that the
matrix elements of the operator (35) can be presented as matrix elements of the effective
Hamiltonian [4, 8]

〈m|Q|n〉 = E+δmn − 〈m|Heff|n〉 (36)

where

〈m|Heff|n〉 = Emδmn +
1

2π
Vmn

∫ 2

−2
dE1

√
1 − (E1/2)2

E + i0 − E1
= Emδmn − Vmn eik. (37)

The last expression was obtained by using the formula

1

x + i0
= iπδ(x) + P

1

x

where P denotes the principal value integral and

Vmn = v2
Lψm(1)ψn(1) + v2

Rψm(N)ψn(N). (38)

As can be seen from (37), the lattice approach gives rise to a finite shift of the resonant energies

Fmn(E) = 1

2N
VmnE (39)

which is of the same order of magnitude as the width of the resonant peak of the transmission

γmn(E) = 1

N
Vmn

√
1 − (E/2)2. (40)

This energy shift is the main difference between the present tight-binding (lattice) approach
and the continuous approach by Dittes [8] where the shifts are equal to zero. The reason for
this difference is that the energy is restricted to the conductance band E = −2 cos k.

The S-matrix is [5, 8]

SCC ′ = δCC ′ − 2π i〈E,C|VCBQ−1VBC ′ |E,C ′〉 =
(

r t ′

t r ′

)
(41)

where r and r ′ are the reflection coefficients from left to left and from right to right, respectively,
and t and t ′ are the transmission coefficients from left to right and from right to left. Using
the definition of the coupling operator (29) we can write the transmission coefficient of the
S-matrix (41) as follows

t = −2π i
∑
mn

Vm(E,L)〈m|Q−1|n〉V ∗
n (E,R). (42)

A concrete calculation of the transmission coefficient needs the procedure of inversion of
the matrix (36). It is therefore more convenient to use a representation by means of the set
of eigenstates of the effective Hamiltonian (37) [6, 9]. Using the biorthogonal basis of the
effective Hamiltonian

Heff|λ) = zλ|λ) (λ|λ′) = δλ,λ′ |λ) = |λ〉 (λ| = 〈λ|∗ (43)

and the projection operator

Peff =
∑

λ

|λ)(λ| (44)

we obtain

t = −2π i
∑

λ

〈E,L|V |λ)(λ|V |E,R〉
E − zλ

. (45)
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1 2 

3 

B 

Figure 3. The two-dimensional billiard B attached to three different leads C = 1, 2, 3. The
coupling coefficients vC between the leads and the billiard are shown by wave lines.

Equation (45) shows immediately that the eigenvalues zλ of the effective Hamiltonian define
the poles of the scattering matrix. We underline that the coupling coefficients in the pole
representation (45) have to be calculated by means of the eigenstates |λ) of the effective
Hamiltonian but not with the eigenstates |b〉 of the closed billiard. The importance of this
difference is presented in [20].

Let us consider for illustration the limiting case N = 1, the one-site Anderson model [19],
which corresponds to the 1D box with a single eigenstate. For simplicity we take vL = vR = v.
Then the formula for the transmission coefficient (9) reduces to

t = − iv2 sin k

cos k − v2 eik
. (46)

On the other hand, from (37) and (38) we have the effective Hamiltonian as the c-number
Heff = z1 = E1 − 2v2 eik where for the one-site dot E1 = 0. Moreover, V1(E,L) =
Ṽ 1(E,R) = v

√
sin k
2π

. Substituting these formulae into (45) we obtain the same formula as
(46) with E = −2 cos k. An analysis of the S-matrix for the transmission through the N-site
1D box is given in section 5.

4. S-matrix theory for transmission through billiards

Let us consider a d-dimensional billiard specified by the internal eigenstates |b〉 and eigenvalues
Eb,

HB |b〉 = Eb|b〉. (47)

Let � be the d − 1 surface of the billiard which encloses the internal region of the billiard
B with the points x ∈ B. The eigenfunctions are 〈x|b〉 = ψb(x). We assume that M leads
are attached to the billiard. Each lead is a tube with arbitrary d − 1 dimensional cross-section
ωC,C = 1, 2, . . . , M , and is semi-infinite along the direction zC ⊥ ωC . The geometry of
the system is illustrated in figure 3 for the particular two-dimensional case and M = 3. We
consider that the cross-section of the Cth tube is constant over the zC-direction. This allows a
separation of variables x⊥ ∈ ωC and zC .
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Assuming that the eigenvalues and eigenfunctions for the transverse section of the Cth
lead are known and denoted by EpC

, φpC
(x⊥), we can write the Schrödinger equation for the

leads in the following manner

HC |E,C, pC〉 = E|E,C, pC〉. (48)

Here

E = −2 cos(kpC
) + EpC

(49)

ψpC
(x) =

√
1

2π |sin kpC
| sin kpC

(jz − jC)φpC
(x⊥) (50)

and jC is the longitudinal position of the attachment of the Cth lead to the billiard. Then the
Hamiltonian of the uncoupled system consisting of the billiard and the M leads is

H0 =
∑

b

Eb|b〉〈b| +
M∑

C=1

∑
pC

∫ 2+EpC

−2+EpC

dE E|E,C, pC〉〈E,C, pC | + h.c. (51)

Similar to (13) let us write the coupling operator as

V =
∑

b

∑
C

∑
pC

∫ 2+EpC

−2+EpC

dE Vb(E,C, pC)|E,C, pC〉〈b| + h.c. (52)

where

Vb(E,C, pC) = 〈E,C, pC |V |b〉. (53)

Let AC ⊂ � be the areas at which the leads are attached to the billiard. They terminate the
semi-infinite leads at jz = jC . The shape of AC is ωC , the cross-section of the lead. The Cth
lead is connected to the billiard through the hopping matrix elements vC , as shown in figure 3
by wave lines. Substituting (50) into (53), we obtain for the coupling matrix elements

Vb(E,C, pC) =
∑
x,y

ψpC
(x)〈x|V |y〉ψb(y) = vC

√
|sin kpC

|
2π

∑
x⊥∈AC

φp(y⊥)ψb(y⊥). (54)

It is justified to generalize the one-dimensional case presented in section 2 to the general
case with d > 1. In the following, we present some formulae that follow in a straightforward
manner. Formulae (36) and (37) now read

〈b|Q|b′〉 = E+δbb′ − 〈b|Heff|b′〉 (55)

where

〈b|Heff|b′〉 = Ebδbb′ −
∑
C

∑
pC

WC(b, pC)WC(b′, pC) eikpC (56)

and

WC(b, p) = vC

∑
x⊥∈AC

ψb(x⊥)φp(x⊥). (57)

The number of channels in each lead is defined by the condition EpC
< E.

Let us consider the continuous approximation. For simplicity we treat the typical case
d = 2. Then the leads are stripes as shown in figure 3 with EpC

= −2 cos(πpC/(NC + 1)) ≈
(πpC/NC)2 − 2 = εpC

− 2, where NC is the numerical width of the Cth lead. In the
continuous limit NC → ∞, or εpC

→ 0 for a restricted number of channels. We can write (49)
as E = −2 cos k ≈ −2 cos(kpC

)+εpC
−2. In order to present the energy of the incident particle

in the usual form E ≈ ε(k) − 2 with ε(k) = k2 for the continuous case we have to consider
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Figure 4. The geometry for the transmission through a rectangular billiard in the tight-binding
approach. The couplings vC between the leads and the billiard are shown by solid lines.

that k � 1. Substituting these relations into (49) we obtain cos(kpC
) ≈ (εpC

− ε(k))/2 � 1.
Therefore, we can approximate eikpC ≈ (εpC

−ε(k))/2 + i. As a result the effective Hamiltonian
(56) takes the standard form

Heff ≈ H̃ B − iWW + (58)

where H̃ B is the billiard Hamiltonian the eigenenergies of which are corrected by the radiation
shifts (εpC

− ε(k))WW +, and W is the matrix whose elements are given by (57). The
dimension of the matrix W is N × K where N is the number of states in the billiard, and
K = ∑

C max(pC).
Finally, the S-matrix elements (41) are characterized by the channel numbers and read

〈C,pC |S|C ′, p′
C ′ 〉 = δCC ′δpp′ − 2π i〈E,C, pC |VCBQ−1VBC ′ |E,C ′, p′

C ′ 〉. (59)

For calculation of the S-matrix we can use the set of the eigenstates ψb of the Hamiltonian
of the closed billiard, see (42), or the biorthogonal set of eigenstates ψλ of the effective
Hamiltonian of the open billiard, see (45). In the last case one can see immediately that the
poles of the S-matrix correspond to the eigenvalues of the effective Hamiltonian (56).

5. Some applications of the general theory

5.1. Transmission through a 2D rectangular billiard

The typical features of the quantum mechanical transmission through a billiard can be described
by means of a two-dimensional billiard with two attached leads of equal widths (figure 4). In
the tight-binding formulation x = a0(l, j) where a0 is the lattice unit. The eigenfunctions and
eigenvalues of the rectangular billiard are

ψm,n(l, j) = ψm(l)ψn(j) (60)

Em,n = Em + En (61)
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where Em and ψm are defined by equations (10), (14) for the corresponding numerical size of
the box Nx,Ny . Further, the wavefunctions (50) of the leads and their energy (49) are

ψE,L,p(l, j) =
√

1

2π |sin kp| sin kp(1 − l)φp(j)

(62)

ψE,R,p(l, j) =
√

1

2π |sin kp| sin kp(l − Nx)φp(j)

E = −2 cos kp + Ep Ep = −2 cos

(
πp

NL + 1

)
(63)

where p = 1, 2, 3, . . . enumerates the channel number and NL is the numerical width of the
leads. We denote the numerical positions of the lead walls by N1 and N2 so that NL = N2−N1.
It follows from the geometry of the system that 1 � N1 � N2 � Ny . Therefore, the area of
intersection between leads and billiard AC is a straight line of length NL. The eigenfunctions
in the transverse sections of the leads have the following form

φp(j) =
√

2

NL + 1
sin

(
πp(j − N1)

NL + 1

)
. (64)

Substituting (60) and (64) into (54) we have for the elements of the coupling matrix

Vm,n(E,L, p) = vLψm(1)

√
|sin kp|

2π

N2∑
j=N1

φp(j)ψn(j)

(65)

Vm,n(E,R, p) = vRψm(Nx)

√
|sin kp|

2π

N2∑
j=N1

φp(j)ψn(j).

Here the Latin indices L,R denote the left and right leads, respectively, as shown in figure 4.
The formulae for the effective Hamiltonian (56) with (57) read

〈m, n|Heff|m′, n′〉 = Em,nδmm′δnn′ − v2
Lψm(1)ψm′(1)


∑
p

WL(n, p)WL(n′, p) eikp

− v2
Rψm(Nx)ψm′(Nx)


∑
p

WR(n, p)WR(n′, p) eikp (66)

with

WC(n, p) =
N2∑

j=N1

ψn(j)φp(j). (67)

The number of channels 
 is defined by the condition εp < E.
Let us now consider the correspondence of the formulae obtained to those received in

the continuous approach by Dittes [8]. First it is necessary to choose, in the last case, some
characteristic space length. This may be the width of the lead or the size of the billiard. Here
we choose, as usual in the literature, the former and denote it by d. In the continuous approach,
the eigenfunctions and the eigenvalues of the rectangular billiard (60) take the following form

ψ̃m,n(x, y) = ψ̃m(x)ψ̃n(y) ψ̃m(x) =
√

2

a
sin(mx/a) (68)
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Ẽm,n = E0π
2

{
m2

(a/d)2
+

n2

(b/d)2

}
(69)

for Dirichlet boundary conditions, where a and b characterize the size of the billiard and
E0 = h̄2/2md2. The eigenfunctions and eigenenergies of the leads are

ψE,L,p(x, y) =
√

1

πd|k| sin(kx) sin(πpy/d) (70)

Ẽ = E0[(k̃d)2 + (πp)2]. (71)

With x = a0i, y = a0j we find the following relations

1 + Nx = a/a0 1 + Ny = b/a0 1 + NL = d/a0 (72)

from the comparison of (60) and (62) with (68) and (70). In the discrete case ψm(j = 0) = 0.
Therefore, it holds approximately

ψm(1) = a0
ψm(1) − ψm(0)

a0
≈ a0ψ

′
m(0)

for the continuous case, and the coupling matrix elements (53) are

Vm,n(E,L, p) ≈ V0�
′
m,n,p(0) (73)

where

�α,p(x, y) =
∫ y2

y1

dy φp(y)ψm,n(x, y) V0 =
√

1

2πkp

and y1, y2 are the positions of the lead walls along the y-axis, so that d = y2 − y1. The same
expressions were derived in [8, 10]. In practical numerical computations, these approximations
are valid if the half of the wavelength π/k exceeds the numerical lattice unit a0 by at least a
factor 10.

It might seem that, for the continuous limit a0 → 0, the radiation shifts go to zero and we
can use the Weidenmüller–Dittes approach directly. However, as can be seen from (71), the
energy is bounded from below. As a consequence, the principal value integral in the matrix
elements of the effective Hamiltonian does not vanish. This is different to the assumption in
[8] that Ẽ has no limits.

5.2. Transmission through a two-site quantum dot

A box consisting of a single atom (site) coupled to a left lead and a right one (L and R
continuous) is the simplest case that gives rise to the Breit–Wigner type formula for the
transmission amplitude (46) shown in figure 2(a). Let us now consider a two-site box that
gives rise to a 2 × 2 effective Hamiltonian. The properties of such Hamiltonians are studied in
literature [9] by focusing on double poles of the S-matrix (branch points in the complex energy
plane) without relation to a realistic system as well as in relation to laser induced structures
in atoms [21]. In our present study, we have the possibility of specifying the effective 2 × 2
Hamiltonian for another specific system to study its properties and to compare the results with
those of the general study.

There are different ways to connect the two cite box with the leads as shown in figure 5.
The cases (a) and (b) are identical, but differ from (c).

For the case (a) we obtain from (66)

Heff = −
(−1 + λ µ

µ −1 + λ

)
(74)
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Figure 5. Two-site dot coupled to two leads.

where

λ = 1
2

(
v2

L + v2
R

)
eik µ = 1

2

(
v2

L − v2
R

)
eik. (75)

The eigenvalues are

z1,2 = −λ ±
√

1 + µ2. (76)

They define the poles of the S-matrix as shown in sections 3 and 4. Since the effective
Hamiltonian is symmetric but not Hermitian we use the biorthogonal basis [22, 6] normalized
by the condition (m|n) = δmn,m = 1, 2, n = 1, 2 where (m| ≡ 〈m|∗. The right eigenstates
of (74) are

|1〉 =
(

a1

a2

)
= 1√

2η(η + 1)

( −µ

1 + η

)
|2〉 =

(
a2

−a1

)
. (77)

With the formulae (56), (57) the transmission amplitude takes the form

t = 2ivLvR

√
1 − (E/2)2

(E − z1)(E − z2)
. (78)

The S-matrix has a double pole when two of the eigenvalues (76) coincide, i.e. when

E = 0 |µ| = 1. (79)

The energy dependence of the poles (76) is shown in figure 6. Such pole behaviour was shown
in many works based on the general presentation of the effective Hamiltonian as a 2×2 matrix
(see, for example, review [9]). The cases (a) and (b) in figure 6 (|µ| > 1) correspond to a free
crossing of energy levels in the complex plane, while the cases (c) and (d) (dashed curves)
correspond to the self-avoided crossing.

The case (c) in figure 5 gives

Heff =
(−1 + λ λ

λ 1 + λ

)
(80)

where λ is given by (75). The poles of the scattering matrix are

z1,2 = λ ±
√

1 + λ2 (81)

and the transmission amplitude is given by

t = −2ivLvRE
√

1 − (E/2)2

(E − z1)(E − z2)
. (82)

A double pole of the S-matrix can be found at

E = 0 |λ| = 1. (83)

The comparison of (82) with (78) shows that the way the leads are connected with the
box plays an important role for the conductance. In particular, the connection (a) gives rise
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Figure 6. The energy behaviour of the poles for the transmission through the two-site dot shown
in figure 5(a). (a) and (b): |µ| = 1 + 0.03. (c) and (d): |µ| = 1 − 0.03 (dashed curves). The solid
curves in (c) and (d) show the case of a double pole, |µ| = 1.

to a transmission zero only at the edges of the energy band E = ±2 while the connection (c)
leads to t = 0 at E = 0. The energy behaviour of the poles (81) is, however, similar to that of
the poles (76) and a double pole of the S-matrix appears at E = 0 in both cases. Therefore,
the transmission is equal to zero in case (c) at the energy where the S-matrix has a double pole
while this is not so in the cases (a) and (b). This shows clearly that the transmission zero for
the case (c) is an interference effect.

5.3. Transmission through the N-site 1D box

As a next application, we consider the 1D model with N sites presented in figure 1 in order
to understand the reduction of the number of transmission peaks by enlarging the coupling
coefficients. In figure 2, the resonant transmission has N = 5 peaks at small coupling
coefficients vL, vR but N − 2 peaks for large coupling coefficients.

Using formulae (37) and (38), the eigenvalues zk, k = 1, 2, . . . , N of the effective
Hamiltonian can be found numerically. In figure 7, the real and imaginary parts of the five
eigenvalues of the effective Hamiltonian (poles of the S-matrix) are shown versus the coupling
constants vL, vR for N = 5 and E = 1. In figures 7(a) and (b), the right coupling coefficient
vR is chosen to be small. In this case, one of the resonance states is broadened with increasing
vL and becomes shifted beyond the energy band. The incident energy E is tuned to the second
energy level E2 = 1 of the box. As a result, this resonance state is broadened. Figures 7(c)
and (d) demonstrate that two resonance states are broadened when both coupling constants
are increased. Also in this case, the two resonance states are shifted beyond the energy band.
Such a nonuniform level broadening in the resonance overlapping regime is studied in many
different cases by using different approaches, see [9]. It is called resonance trapping [6]. The
accompanying shift in energy appears only when the principal value integral of the matrix
elements of the effective Hamiltonian is non-vanishing. This is the case in most realistic
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Figure 7. Real and imaginary parts of the five poles of the 1D chain shown in figure 1 versus the
coupling coefficients vL, vR, E = 1. The chain consists of five sites.
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Figure 8. (a) The billiard coupled to left and right 1D leads at the points jL and jR . In (b)
jL = jR = j0. For simplicity a rectangular billiard is shown in the figure (although it may be of
arbitrary shape). The couplings between the billiard and leads vL and vR are shown by wavy lines.

systems including atomic nuclei and atoms [9] and also those considered in the present paper
(figures 7(a) and (c)).

Thus, the two resonance states do not vanish at strong coupling strength between box
and leads as might be concluded from figure 2. The two resonance states go beyond the
energy band and can therefore contribute to the transmission only via interference with
the remaining narrow resonant states. This example clearly demonstrates the advantage
of the effective Hamiltonian approach to the description of transmission.

5.4. Transmission through a 2D billiard connected to 1D leads

Let two 1D leads be coupled to a 2D billiard at the points jL (input lead) and jR (output lead)
where j = (jx, jy), Nz = 1 as shown in figure 8(a). Substituting the wavefunctions (15) of
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the 1D leads we obtain from equation (56)

〈b|Heff|b′〉 = Ebδbb′ +
[
v2

Lψb( jL)ψb′( jL) + v2
Lψb( jR)ψb′( jR)

]
eik. (84)

For jL = jR , the equation that defines the poles of the scattering matrix, can be found
analytically. From (84) it follows∣∣∣∣∣∣∣∣∣∣

E1 + ωψ2
1 ( j0) − E ωψ1( j0)ψ2( j0) ωψ1( j0)ψ3( j0) . . .

ωψ1( j0)ψ2( j0) E2 + ωψ2
2 ( j0) − E ωψ1( j0)ψ3( j0) . . .

ωψ1( j0)ψ3( j0) ωψ2( j0)ψ2( j0) E3 + ωψ2
3 ( j0) − E . . .

...
...

... . . .

∣∣∣∣∣∣∣∣∣∣
= 0 (85)

where ω = (
v2

L + v2
R

]
eik is the effective coupling constant. The particular case of a 4 × 4

effective Hamiltonian (85) was considered in [23]. This determinant can easily be transformed
to [24]

∏
b

ωψ2
b ( j0)

∣∣∣∣∣∣∣∣∣

x1 + 1 1 1 . . .

1 x2 + 1 1 . . .

1 1 x3 + 1 . . .

...
...

... . . .

∣∣∣∣∣∣∣∣∣
=

∏
b

ωψ2
b ( j0)

{
1 +

∑
b

1

xb

}
= 0 (86)

where

xb = Eb − E

ωψ2
b ( j0)

.

As a result, the equation for the poles of the S-matrix reads∑
b

(
v2

L + v2
R

)
e−ikψ2

b ( j0)

E − Eb

= 0. (87)

5.5. A 3D billiard connected to a 3D lead

Consider a 3D billiard that has an arbitrary shape in the x, y plane but is restricted in the
z-direction by two parallel planes separated by a distance d. In the tight-binding approximation,
the height of the 3D billiard can be specified by the number Nz being equal to 1, 2, 3, . . . .

This billiard allows separation of the variables, and is characterized by the eigenvalues and
eigenstates of the 3D box Hamiltonian HB

HB |b⊥, nz〉 = (
Eb⊥ + Enz

)|b⊥, nz〉 (88)

where Eb⊥ are the transverse eigenenergies of the billiard and

Enz
= −2 cos

(
πnz

Nz + 1

)
nz = 1, 2, . . . , Nz (89)

are the longitudinal eigenenergies of the box in z-direction. The eigenfunctions in the
z-direction are

ψnz
(z) =

√
2

Nz + 1
sin

(
πnzzj

Nz + 1

)
jz = 1, 2, . . . , Nz. (90)

We consider two different types of the connection between the billiard and the leads that
both are shown in figure 9. In the first case, (a), the 1D leads are coupled to the billiard at
every point j, jz = 1 of the billiard. In the second case, (b), the billiard is coupled to the 3D
lead the transverse section of which coincides with the shape of the billiard in 2D.
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Figure 9. 3D billiards connected to different 3D leads. (a) The billiard is coupled to Nb 1D leads
at each point j where Nb is the number of sites of the billiard. (b) The billiard is coupled to one 3D
lead with the same transverse section as the billiard in 2D. For simplicity, a rectangular billiard is
shown although it can be of arbitrary shape. The couplings v between billiard and leads are shown
by wavy lines.

For the case (a) formula (35) reads

Q = E+ − HB −
Nb∑

C=1

VBC

1

E+ − HC

VCB (91)

where Nb is the total number of sites of the billiard in the x, y plane. This number is equal to
the total number of states |b〉. The coupling matrix elements are

〈b, nz|VBL|C〉 =
∑

j1

∑
j2

〈b|j1〉〈 j1|VBC |j2〉〈 j2|C〉 = vψb( jC)

√
|sin k|

2π
(92)

where we assume that the coupling between the billiard and each 1D lead (with the
eigenfunction (15)) is equal to v. Substituting (92) into (91) we obtain, similar to (37),

〈b|Heff|b′〉 = Ebδbb′ +
Nb∑

C=1

∫
dE1 〈b|VBC |C〉 1

E + i0 − E1
〈C|VCB |b′〉 = (Eb + v2 eik)δbb′ .

(93)

That means, for the case (a) in figure 9, the effective Hamiltonian is diagonal with isolated
poles zb = Eb + v2 eik, k = a cos(−E/2).

In the case (b) of figure 9, the billiard is coupled to one 3D lead, and the total Hamiltonian
is

H = H0 + V

H0 =
∑
b,nz

(
Eb + Enz

)|b, nz〉〈b, nz| +
∑

b

∫ 2+Eb

−2+Eb

∫
dE E[|E, b〉〈E, b| + |b,R〉〈E, b|]

V =
∑
bb′

∑
nn′

z

∫ 2+Eb′

−2+Eb′
dE Vb,nz,b′(E)|E, b′〉〈b, nz| + h.c. (94)

where the eigenfunctions of the lead are

〈 j, jz|E, b〉 =
√

1

2π |sin kb| sin kb(1 − jz)ψb( j). (95)



S-matrix theory for transmission through billiards in tight-binding approach 11431

Here, jz runs along the lead and j runs over the sites in the transverse section of the lead. Since
the transverse section eigenfunctions of the 3D lead coincide with those of the 2D billiard,
similar to (63), we have

E = −2 cos kb + Eb. (96)

The coupling matrix elements in (94) are

Vb,nz,b′(E) = 〈b, nz|V |E, b′〉 =
∑
j,jz

∑
l,lz

〈b|j〉〈nz|jz〉〈 j, jz|V |l, lz〉〈l, lz|E, b′〉. (97)

As can be seen from figure 9

〈b|j, jz〉〈 j|V |l, lz〉 = vδj,lδjz,Nz
δlz,1.

Substituting (95) into (97), we get

Vb,nz,b′(E) = v

√
|sin kb′ |

2π

∑
j

〈b|j〉〈 j|b′〉〈Nz|nz〉 = v

√
|sin kb′ |

2π
δbb′ψnz

(Nz). (98)

For the continuous case the last expression has to be substituted by ψ ′(z = d) [8]. Therefore,
the matrix elements of the effective Hamiltonian are

〈b|Heff|b′〉 =
{(

Eb + Enz

)
δnzn′

z
+ v2ψnz

(Nz)ψn′
z
(Nz)

1

2π

∫ 2+Eb

−2+Eb

dE′ sin kb

E + i0 − E′

}
δbb′

= [(
Eb + Enz

)
δnzn′

z
+ v2 eikbψnz

(Nz)ψn′
z
(Nz)]δbb′ . (99)

If Nz = 1, we obtain an effective Hamiltonian for the case (b) in figure 9, that is diagonal in
the eigen basis of the billiard. This result is similar to that of the case (a). For Nz > 1, the
effective Hamiltonian is also diagonal, however, with blocks Nz × Nz at each diagonal place.
For Nz = 2, taking into account (89) and (90), the matrix block takes the following form

Heff =
(

Eb + 1 + v2

2 eikb v2

2 eikb

v2

2 eikb Eb − 1 + v2

2 eikb

)
. (100)

Correspondingly, the poles of the S-matrix are

znz,b = Eb +
v2

2
eikb ±

√
1 +

v4

4
e2ikb . (101)

Using (96), the condition for the double pole can be written down,

v2 = 2 E = Eb. (102)

6. Wavefunction in the interior of the billiard

The wavefunction in the interior of the billiard is given by expression (34). Using the projection
operator for the billiard, PB = ∑

b |b〉〈b| where |b〉 are the eigenstates of the (closed) billiard,
we can rewrite this expression as follows

ψB(x) =
∑
C,pC

∑
bb′

Q−1
bb′Vb′(E,C, pC)ψb(x) =

∑
b

fbψb(x). (103)

The scattering wavefunction in the interior of the billiard can therefore be expanded in the set
of eigenfunctions ψb(x) of the Hamiltonian of the closed billiard. The expansion coefficients
are

fb =
∑
C,pC

∑
b′

Q−1
bb′Vb′(E,C, pC). (104)
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The drawback of this representation consists in the fact that the expansion (103) includes
the procedure of inversion of the matrix (55). Similar to (45) we can use the set of
eigenfunctions of the effective Hamiltonian for the expansion of the scattering wavefunction.
Using relations (43) and (44) we can write (34) as follows

ψB(x) =
∑

λ

fλψλ(x) (105)

where the expansion coefficients are

fλ =
∑
C,pC

Vλ(E,C, pC)

E+ − zλ

. (106)

7. Summary

In this paper we derived the coupling matrix between a closed billiard and leads attached. The
knowledge of the coupling matrix gives the explicit expression for the effective Hamiltonian,
the S-matrix and the scattering wavefunction in the interior of the billiard. The non-Hermitian
effective Hamiltonian reflects the spectral properties of the closed billiard. The eigenvalues
of the effective Hamiltonian however are shifted in energy and are complex because of the
openness of the billiard.

The theory presented is based on the tight-binding approach, which allows us to
establish the exact correspondence between the S-matrix theory and numerical calculation
of the transmission through the billiard that is based on a finite-difference Hamiltonian.
The present approach can be easily applied to the continuous case. The advantage of the
effective Hamiltonian consists above all in the possibility of interpreting numerical results for
the transmission (figure 2) by means of the poles of the S-matrix (figure 7). The last are the
eigenvalues of the effective Hamiltonian. It allows us therefore to systematically control
the transmission through billiards. We presented a few specific examples for which the
effective Hamiltonian reduces to a complex two by two matrix.
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